Respuesta :

yoco63
Since the line is parallel to AB, the two slopes are the same
        
                      slope of AB = m = (y₂-y₁)/(x₂-x₁)
                                     
                                           m= (5-0)/(-6-(-3))= - 5/3
The equation of the line is y-y₁=m(x-x₁)
                      The origin    P(0,0) 
                                       y=mx
                                       y= -[tex] \frac{5}{3} [/tex]x   Solution

The equation of the line is y = -3/5x

How to determine the line equation?

The points of line AB are given as:

A(-3, 0) and B(-6, 5)

Start by calculating the slope of AB using:

m = (y2 - y1)/(x2 - x1)

This gives

m = (5 - 0)/(-6 + 3)

Evaluate

m = -3/5

Parallel lines have equal slope.

So, the slope of the line that passes the origin is -3/5

The line equation of a line that pass the origin is calculated as:

y = mx

This gives

y = -3/5x

Hence, the equation of the line is y = -3/5x

Read more about linear equations at:

https://brainly.com/question/1884491

#SPJ5