Respuesta :

Space

Answer:

[tex]\displaystyle d = \sqrt{26}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra II

  • Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Point (-2, -5)

Point (3, -6)

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [DF]:                     [tex]\displaystyle d = \sqrt{(3--2)^2+(-6--5)^2}[/tex]
  2. (Parenthesis) Simplify:                         [tex]\displaystyle d = \sqrt{(3+2)^2+(-6+5)^2}[/tex]
  3. (Parenthesis) Add:                               [tex]\displaystyle d = \sqrt{(5)^2+(-1)^2}[/tex]
  4. [√Radical] Exponents:                         [tex]\displaystyle d = \sqrt{25+1}[/tex]
  5. [√Radical] Add:                                    [tex]\displaystyle d = \sqrt{26}[/tex]