Answer:
[tex]\displaystyle d = \sqrt{26}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Point (-2, -5)
Point (3, -6)
Step 2: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [DF]: [tex]\displaystyle d = \sqrt{(3--2)^2+(-6--5)^2}[/tex]
- (Parenthesis) Simplify: [tex]\displaystyle d = \sqrt{(3+2)^2+(-6+5)^2}[/tex]
- (Parenthesis) Add: [tex]\displaystyle d = \sqrt{(5)^2+(-1)^2}[/tex]
- [√Radical] Exponents: [tex]\displaystyle d = \sqrt{25+1}[/tex]
- [√Radical] Add: [tex]\displaystyle d = \sqrt{26}[/tex]