Respuesta :
Answer:
Explanation:
mass of first marble [tex]m_1=m=0.015\ kg[/tex]
Initial velocity of the first marble [tex]u_1=22.5\ m/s[/tex]
considering right side as positive
Mass of second marble
[tex]m_2=m=0.015\ kg\\u_2=-18\ cm/s[/tex]
After collision first marble moves to the left with a velocity of 18 cm/s
i.e. [tex]v_1=-18\ cm/s[/tex]
considering [tex]v_2[/tex] be the velocity of second marble after collision
The Coefficient of restitution is 1 for an elastic collision
[tex]e=\frac{v_2-v_1}{u_1-u_2}[/tex]
Putting values
[tex]1=\frac{v_2-(-18)}{22.5-(-18)}\\22.5+18=v_2+18\\v_2=22.5\ m/s[/tex]
So, the velocity of the second marble is 22.5 m/s to the right after the collision
(b)Initial kinetic energy =[tex]0.5\times 0.015\times (22.5\times 10^{-2})^2+0.5\times 0.015\times (18\times 10^{-2})^2=6.22\times 10^{-4}\ J[/tex]
Final kinetic energy=
[tex]0.5\times 0.015\times (18\times 10^{-2})^2+0.5\times 0.015\times (22.5\times 10^{-2})^2=6.22\times 10^{-4}\ J[/tex]
(A) The velocity will be "22.5 m/s".
(B) The initial as well as the final K.E will be "6.22×10⁻⁴ J".
Given:
First marble:
- Velocity, [tex]u_1 = 22.5 \ m/s[/tex]
- Mass, [tex]m = m_1 = 0.015 \ kg[/tex]
Second marble,
- Velocity, [tex]u_2 = -18 \ cm/s[/tex]
- Mass, [tex]m = m_2 = 0.015 \ kg[/tex]
(A)
As we know, the coefficient of restitution will be:
→ [tex]e = \frac{v_2-v_1}{u_1-u_2}[/tex]
By putting the values,
[tex]1 = \frac{v_2-(-18)}{22.5-(-18)}[/tex]
By applying cross-multiplication,
[tex]22.5+18=v_2+18[/tex]
[tex]v_2 = 22.5 \ m/s[/tex] (velocity)
(B)
The initial K.E:
= [tex]0.5\times 0.015(22.5\times 10^{-2})^2+0.5\times 0.015(18\times 10^{-2})^2[/tex]
= [tex]6.22\times 10^{-4 \ J[/tex]
The final K.E:
= [tex]0.5\times 0.015(18\times 10^{-2})^2+0.5\times 0.015(22.5\times 10^{-2})^2[/tex]
= [tex]6.22\times 10^{-4 \ J[/tex]
Thus the responses above is right.
Learn more about collision here:
https://brainly.com/question/25786281