You sell your bicycle to your friend for 65$ your friend gives you x five dollar bills and y ten dollar bills. There are a total of 9 bills. How many five dollar and ten dollars bills did your friend give you?

Respuesta :

Answer:

There are [tex]5[/tex] five dollar bills and [tex]4[/tex] ten dollar bills.

Step-by-step explanation:

Given:

Selling price of bicycle [tex]=\$65[/tex].

The friend gave [tex]x[/tex] five dollar bills and [tex]y[/tex] ten dollar bills.

Total number of bills [tex]=9[/tex].

To find: Number of five dollar bills and ten dollar bills the friend gave.

Solution:

The friend gave [tex]x[/tex] five dollar bills and [tex]y[/tex] ten dollar bills and the friend gave [tex]9[/tex]bills in all.

So, [tex]x+y=9[/tex].

[tex]\Rightarrow x=9-y ...(i)[/tex]

Selling price of bicycle [tex]=\$65[/tex].

So, [tex]5x+10y=65...(ii)[/tex]

Putting the value of [tex]x[/tex] from equation [tex](i)[/tex] in equation [tex](ii)[/tex].

[tex]\Rightarrow 5(9-y)+10y=65[/tex]

[tex]\Rightarrow 45-5y+10y=65[/tex]

[tex]\Rightarrow 45+5y=65[/tex]

[tex]\Rightarrow 5y=65-45[/tex]

[tex]\Rightarrow 5y=20[/tex]

[tex]\Rightarrow y=\frac{20}{5}[/tex]

[tex]\Rightarrow y=4[/tex]

Now, putting the value of [tex]y[/tex] in equation [tex](i)[/tex].

[tex]\Rightarrow x=9-4[/tex]

[tex]\Rightarrow x=5[/tex]

Hence, there are [tex]5[/tex] five dollar bills and [tex]4[/tex] ten dollar bills.