How should the mass of a harmonic oscillator be changed to double the frequency? Can the frequency be tripled by a suitable adjustment of the mass?

Respuesta :

Answer:

a. [tex]m' = \frac{m}{4}[/tex]

b. [tex]m' = \frac{m}{9}[/tex]

Explanation:

The frequency of a harmonic oscillator is given by the following formula:

[tex]\omega = \sqrt{\frac{k}{m}}[/tex]   ----------------- equation (1)

a.

In order to double the frequency of this oscillator:

ω' = 2ω

m' = ?

Therefore,

[tex]\omega ' = 2\omega = \sqrt{\frac{k}{m'}}[/tex]

using equation (1):

[tex]2 \sqrt{\frac{k}{m}} = \sqrt{\frac{k}{m'}}\\\\ \frac{4}{m} = \frac{1}{m'}[/tex]  

[tex]m' = \frac{m}{4}[/tex]

a.

In order to triple the frequency of this oscillator:

ω' = 3ω

m' = ?

Therefore,

[tex]\omega ' = 3\omega = \sqrt{\frac{k}{m'}}[/tex]

using equation (1):

[tex]3\sqrt{\frac{k}{m}} = \sqrt{\frac{k}{m'}}\\\\ \frac{9}{m} = \frac{1}{m'}[/tex]  

[tex]m' = \frac{m}{9}[/tex]

A) To double the Frequency of a harmonic oscillator ;

Divide the mass by four       i.e. m₁ = m / 4

B) To triple the frequency of a harmonic oscillator :

Divide the mass by nine (9)     i.e.  m₂ = m / 9

Given that The frequency of a harmonic oscillator is expressed as  

[tex]w = \sqrt{\frac{k}{m} }[/tex]  -- ( 1 )

A) Doubling the frequency

[tex]2w = \sqrt{\frac{k}{m_{1} } }[/tex]  ---- ( 2 )

Applying equation ( 1 ) and ( 2 )

[tex]2\sqrt{\frac{k}{m} } = \sqrt{\frac{k}{m_{1} } }[/tex]

squaring both sides

( 4 / m )  =  1 / m₁

∴ m₁ ( new mass ) = m / 4

B) Tripling the frequency

3w = [tex]\sqrt{\frac{k}{m_{2} } }[/tex]    ---- ( 3 )

applying equation ( 1 ) and ( 3 )

[tex]3 \sqrt{\frac{k}{m} } = \sqrt{\frac{k}{m_{2} } }[/tex]  

squaring both sides

( 9 / m ) =  1 / m₂

m₂ = m / 9

Hence we can conclude that To double the Frequency of a harmonic oscillator   m₁ = m / 4  and To triple the frequency of a harmonic oscillator : m₂ = m / 9

Learn more : https://brainly.com/question/20050933