Which equation finds the volume of a cube with a side length of 6n^6 units?
a. (2n^6)^3 = 8n^16 cubic units
b. (2n^6)^3 = 2n^18 cubic units
c. 2(n^6)^3 = 2n^18 cubic units
d. 2(n^6)^3 = 6n^18 cubic units

Respuesta :

I hope this helps you
Ver imagen Аноним

Answer:

Option A is correct that is [tex](2n^6)^3=8n^{18}[/tex] cubic units

Step-by-step explanation:

We are given with length of the side of the cube = [tex]2n^6\:units[/tex]

We need to find volume of the cube.

We know that Volume of cube = ( side )³

                                                   = [tex](2n^6)^3[/tex]

                                                   = [tex]2^3(n^6)^3[/tex]

we use the law of exponent, [tex](x^a)^b=x^{ab}[/tex]

                                                   = [tex]8n^{6\times3}[/tex]

                                                   = [tex]8n^{18}[/tex] cubic units

Therefore, Option A is correct that is [tex](2n^6)^3=8n^{18}[/tex] cubic units