Respuesta :
A ) h = -16 t² + 135 t + 76
Let : h = 0
0 = - 16 t² + 135 t + 76
B ) t 1/2 = (-b+/- √ ( b² - 4 ac ) / ( 2 a )
t 1/2 = (-135 - √(18,225 + 4,864))/ (-32) = ( - 135 - 151.95) / (- 32)=
= (-286.95) / (- 32) = 9.967 ≈ 9.0 s ( other solution is negative )
Answer:
2) 0 = -16 t² + 135 t + 76; 9 s
Let : h = 0
0 = - 16 t² + 135 t + 76
B ) t 1/2 = (-b+/- √ ( b² - 4 ac ) / ( 2 a )
t 1/2 = (-135 - √(18,225 + 4,864))/ (-32) = ( - 135 - 151.95) / (- 32)=
= (-286.95) / (- 32) = 9.967 ≈ 9.0 s ( other solution is negative )
Answer:
2) 0 = -16 t² + 135 t + 76; 9 s
Answer:
The answer is 2.) [tex]0=-16t^{2}+135t+76;9 s[/tex]
Step-by-step explanation:
Given initial velocity=135 ft/s
& cliff=76 foot
Given quadratic equation
[tex]0=-16t^{2}+vt+c[/tex]
⇒ [tex]0=-16t^{2}+135t+76[/tex] (let h=0 it is given)
⇒ [tex]t=\frac{-135\pm\sqrt ((135)^{2}-4(-16)(76))}{2(-16)}[/tex]
⇒ [tex]t=\frac{-135\pm151.951}{-32}[/tex]
⇒ t=8.96≈9 s (the other root is negative)
Hence, rocket will take 9 s to hit the ground after launched.