Respuesta :

Answer:

The complete set of domain (x) and range values (y) is given by:

x                   y

-2                39

0                 13

3                  11

Step-by-step explanation:

Considering the function

[tex]f(x)=-8x+13[/tex]

As we know that the range of a function consists of the entire set of all possible resulting values of the dependent variable commanly called y or f(x), once we have substituted the domain.

Now

  • As the x values are -2, 0, and 3. So, the domain interval is (-2,0,3).

Putting x = -2 in f(x) to determine the range for the value x = -2

[tex]f(x)=-8x+13[/tex]

[tex]f(-2)=-8(-2)+13=16+13=39[/tex]

Putting x = 0 in f(x) determine the range for  the value x = 0

[tex]f(x)=-8x+13[/tex]

[tex]f(0)=-8(0)+13=0+13=13[/tex]

Putting x = 0 in f(x) determine the range for the value x = 3

[tex]f(x)=-8x+13[/tex]

[tex]f(3)=-8(3)+13=-24+13=11[/tex]

Therefore, the complete set of domain (x) and range values (y) is given by:

x                   y

-2                39

0                 13

3                  11