Respuesta :
[tex]1^o\ 6b \ \textless \ 24\ \ \ \ |divide\ both\ sides\ by\ 6\\\\\boxed{b \ \textless \ 4}\\\\2^o\ 4b+12 \ \textgreater \ 4\ \ \ \ |subtract\ 12\ from\ both\ sides\\\\4b \ \textgreater \ -8\ \ \ \ |divide\ both\ sdies\ by\ 4\\\\\boxed{b \ \textgreater \ -2}\\\\conclusion\ if\ 6b \ \textless \ 24\ or\ 4b+12 \ \textgreater \ 4\ therefore\ your\ answer:\ b\in\mathbb{R}\\\\if\ not\ "or"\ but\ "AND"\ therefore\ your\ answer\ is\ \boxed{b \ \textgreater \ -2\ and\ b \ \textless \ 4}\\\Downarrow\\\boxed{b\in(-2;\ 4)}[/tex]