Respuesta :
Answer:
[tex] \rm b = \dfrac{2A }{h} [/tex]
Step-by-step explanation:
[tex] \rm Solve \: for \: b: \\ \rm \longrightarrow A = \dfrac{1}{2} bh \\ \\ \rm A = \dfrac{bh}{2} \: is \: equivalen t \: to \: \dfrac{bh}{2} = A: \\ \rm \longrightarrow \dfrac{bh}{2} = A \\ \\ \rm Divide \: both \: sides \: by \: \dfrac{h}{2} : \\
\rm \longrightarrow \dfrac{bh}{2} \div \dfrac{h}{2} = A \div \dfrac{h}{2} \\ \\ \rm \longrightarrow \dfrac{bh}{2} \times \dfrac{2}{h} = A \times \frac{2}{h} \\ \\ \rm \dfrac{bh}{2} \times \dfrac{2}{h} = b : \\ \rm \longrightarrow b = \dfrac{2A }{h}[/tex]
Answer:
b in terms of A and h will be:
[tex] \boxed{ \rm{b = \frac{2A}{h} }}[/tex]
Step-by-step explanation:
This is basically the formula for finding the area(A) of the triangle in terms of b and h. We have to solve for b in terms of A and h.
[tex] \rm{A = \dfrac{1}{2} bh}[/tex]
Multiplying 2 in the LHS. This is shift because inverse of division is multiplication.
[tex] \rm{2A = bh}[/tex]
Dividing h from both sides,
[tex] \rm{b = \dfrac{2A}{h} }[/tex]
And we are done! :D