Find the complex zeros of the following polynomial function.
f(x)=
[tex] {x}^{3} - 1[/tex]
Make sure to simplify your answer Type an exact answer, using radicals and i as needed. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.

The complex zeros of f are:

Respuesta :

Answer:

[tex]x=\frac{-1\pm\sqrt{3}i}{2}[/tex]

Step-by-step explanation:

[tex]f(x)=x^3-1[/tex]

[tex]0=x^3-1[/tex]

[tex]0=(x^2+2x+1)(x-1)[/tex]

[tex]x-1=0[/tex]

[tex]x=1[/tex] <-- Real Solution

[tex]x^2+x+1=0[/tex]

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

[tex]x=\frac{-2\pm\sqrt{2^2-4(1)(1)}}{2(1)}[/tex]

[tex]x=\frac{-1\pm\sqrt{1^2-4(1)(1)}}{2(1)}[/tex]

[tex]x=\frac{-1\pm\sqrt{1-4}}{2}[/tex]

[tex]x=\frac{-1\pm\sqrt{-3}}{2}[/tex]

[tex]x=\frac{-1\pm\sqrt{3}i}{2}[/tex] <-- Complex Solutions