Respuesta :

Answer:

[tex]r=6[/tex]

Step-by-step explanation:

Make an equation in point-slope form where:

  • the equation is [tex]y-y_{1}=m(x-x_{1})[/tex]
  • m is the slope
  • y1 and x1 are the corresponding coordinate points [tex](x_{1},y_{1})[/tex]

Insert the known values:

[tex](-2_{x1},8_{y1})\\\\m=-\frac{1}{2} \\\\y-8=-\frac{1}{2} (x-(-2))\\\\y-8=-\frac{1}{2} (x+2)[/tex]

Use the distributive property:

[tex]-\frac{1}{2} (x+2)\\\\-\frac{1}{2}(x)-\frac{1}{2}(2)[/tex]

Simplify. Turn the 2 into a fraction by converting to the fraction [tex]\frac{2}{1}[/tex] , which is still equal to 2:

[tex]-\frac{1}{2}(2)\\\\-\frac{1}{2}*\frac{2}{1}[/tex]

Multiply across:

[tex]-\frac{1}{2}*\frac{2}{1} =-\frac{2}{2} =-1[/tex]

Re-insert into the equation:

[tex]y-8=-\frac{1}{2}x-1[/tex]

Solve for y. Add 8 to both sides (to isolate y using inverse operations):

[tex]y-8+8=-\frac{1}{2}x-1+8\\\\y=-\frac{1}{2}x+7[/tex]

Now insert the y value of the other point to find r (which will have the same value as x):

[tex](r_{x},4_{y})\\\\4=-\frac{1}{2}x+7[/tex]

Simplify the fraction by multiplying. Add 1 as the denominator for x:

[tex]-\frac{1}{2}*\frac{x}{1}[/tex]

Multiply across:

[tex]-\frac{1}{2}*\frac{x}{1}=-\frac{x}{2}[/tex]

Re-insert:

[tex]4=-\frac{x}{2} +7[/tex]

Subtract 7 from both sides (to isolate the variable using inverse operations):

[tex]4-7=-\frac{x}{2} +7-7\\\\-3=-\frac{x}{2}[/tex]

Multiply both sides by 2 (to undo the fraction using inverse operations):

[tex]2(-3)=2(-\frac{x}{2}) \\\\-6=-x[/tex]

Divide both sides by -1 (to make the variable positive, since two negatives make a positive):

[tex]\frac{-6}{-1} =\frac{-x}{-1} \\\\x=6[/tex]

Therefore, the value of r is 6.

:Done