Answer:
C. [tex] \frac{\pi}{4} [/tex]
Step-by-step explanation:
[tex]terminal \: point \: of \: \theta = \bigg( \frac{ \sqrt{2} }{2}, \: \: \frac{ \sqrt{2} }{2} \bigg) \\ \\ \implies \: (x, \: \: y) = \bigg( \frac{ \sqrt{2} }{2} \: \: \frac{ \sqrt{2} }{2} \bigg) \\ \\ \implies \: x = \frac{ \sqrt{2} }{2}, \: \: y = \frac{ \sqrt{2} }{2} \\ \\ \because \tan \theta = \frac{y}{x} \\ \\ \therefore \tan \theta = \frac{ \frac{ \sqrt{2} }{2} }{ \frac{ \sqrt{2} }{2} } \\ \\\therefore \tan \theta =1 \\ \\ \implies \tan \theta =\tan \bigg( \frac{\pi}{4} \bigg) \\ \\ \implies \: \theta \: = \frac{\pi}{4} [/tex]