What is the value of tan(60°)? One-half StartRoot 3 EndRoot StartFraction StartRoot 3 EndRoot Over 2 EndFraction StartFraction 1 Over StartRoot 3 EndRoot EndFraction

Respuesta :

Answer:

[tex]\sqrt3[/tex]

Step-by-step explanation:

To find:

The value of [tex]tan60^\circ[/tex] = ?

Solution:

Kindly consider the equilateral [tex]\triangle ABC[/tex] as attached in the answer area.

Let the side of triangle = [tex]a[/tex] units

Let us draw the perpendicular from vertex A to side BC.

It will divide the side BC in two equal parts.

i.e. BD = DC = [tex]\frac{a}{2}[/tex]

Using Pythagorean Theorem in [tex]\triangle ABD[/tex]:

[tex]\text{Hypotenuse}^{2} = \text{Base}^{2} + \text{Perpendicular}^{2}[/tex]

Side AD = [tex]\frac{\sqrt3}{2}a[/tex]

Using Trigonometric ratio:

[tex]tan\theta = \dfrac{Perpendicular}{Base}[/tex]

[tex]tanB = \dfrac{AD}{BD}[/tex]

Putting the values of AD and BD:

[tex]tan60^\circ=\dfrac{\frac{\sqrt3}{2}a}{\frac{1}{2}a}\\\Rightarrow tan60^\circ = \bold{\sqrt3}[/tex]

Ver imagen isyllus

Answer:

B) [tex]\sqrt{3}[/tex]

Step-by-step explanation:

Edge2021

Ver imagen sarbear97