Respuesta :

Answer:

see below

Step-by-step explanation:

Angles opposite each other when two lines cross. (see attached)

in the attached example, the angle a° and b° are vertical angles.

Ver imagen ricchad

Step-by-step explanation:

[tex]

\underline{\bf{Given\::}}

Given:

\underline{\bf{To\:find\::}}

Tofind:

\underline{\bf{Explanation\::}}

Explanation:

\boxed{\bf{\frac{1}{f} =\frac{1}{v} -\frac{1}{u} }}}}

\begin{gathered}\longrightarrow\sf{\dfrac{1}{-10} =\dfrac{1}{v} -\dfrac{1}{-30} }\\\\\\\longrightarrow\sf{\dfrac{1}{v} =\dfrac{1}{-10} +\dfrac{1}{30} }\\\\\\\longrightarrow\sf{\dfrac{1}{v} =\dfrac{-3+1}{30} }\\\\\\\longrightarrow\sf{\dfrac{1}{v} =\cancel{\dfrac{-2}{30} }}\\\\\\\longrightarrow\sf{\dfrac{1}{v} =\dfrac{1}{-15} }\\\\\\\longrightarrow\sf{v=-15\:cm}\end{gathered}

−10

1

=

v

1

−30

1

v

1

=

−10

1

+

30

1

v

1

=

30

−3+1

v

1

=

30

−2

v

1

=

−15

1

⟶v=−15cm

\boxed{\bf{M \:A \:G \:N\: I \:F \:I \:C\: A\: T \:I \:O\: N :}}

MAGNIFICATION:

\begin{gathered}\mapsto\sf{m=\dfrac{Height\:of\:image\:(I)}{Height\:of\:object\:(O)} =\dfrac{Distance\:of\:image}{Distance\:of\:object} =\dfrac{v}{u} }\\\\\\\mapsto\sf{m=\cancel{\dfrac{-30}{-15}} }\\\\\\\mapsto\bf{m=2\:cm}\end{gathered}

↦m=

Heightofobject(O)

Heightofimage(I)

=

Distanceofobject

Distanceofimage

=

u

v

↦m=

−15

−30

↦m=2cm

Thus;

The magnification will be 2 cm .

[/tex]