Respuesta :
Answer:
231in^3
Step-by-step explanation:
We know that the volume of a sphere/globe is given as
V=4 /3πr^3
but the circumference is expressed as
C=2πr
solving for r given that C=24
24=2*3.142r
24=6.284r
r=24/6.284
r=3.8in
put r=3.6 in the expression for volume we have
V=4 /3π(3.8)^3
V=4 /3π(55
V=(220.59*3.142)/3
V=693.12/3
V=231in^3
The volume of the globe is 231in^3
The volume of the globe is 233 cubic inches.
Important information:
- Circumference of the globe along the equator to be 24 inches.
We need to find the volume of the globe.
Volume of sphere:
Let [tex]r[/tex] be the radius of the globe.
Circumference of the globe along the equator is:
[tex]C=2\pi r[/tex]
[tex]24=2\pi r[/tex]
[tex]\dfrac{24}{2\pi }=r[/tex]
[tex]\dfrac{12}{\pi}=r[/tex]
Volume of the globe is:
[tex]V=\dfrac{4}{3}\pi r^3[/tex]
[tex]V=\dfrac{4}{3}\pi \left(\dfrac{12}{\pi}\right)^3[/tex]
[tex]V=\dfrac{4}{3}\pi \left(\dfrac{1728}{\pi^3}\right)[/tex]
[tex]V=233.444...[/tex]
[tex]V\approx 233[/tex]
Therefore, the volume of the globe is 233 cubic inches.
Find out more about 'Volume of sphere' here:
https://brainly.com/question/381274