Write a linear equation in standard form for the line that goes through (4,2) and (8,1).

Answer:
D. [tex]x+4y=12[/tex]
Step-by-step explanation:
The given equation passes through:
(4,2) and (8,1).
The equation can be obtained using the formula;
[tex]y-y_1=m(x-x_1)[/tex]
The slope is given by:
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Let [tex](x_1,y_1)=(4,2)[/tex] and [tex](x_2,y_2)=(8,1)[/tex], then we have;
[tex]m=\frac{1-2}{8-4} =-\frac{1}{4}[/tex]
we now plug in the slope and the point to obtain;
[tex]y-2=-\frac{1}{4}(x-4)[/tex]
We multiply through by 4 to obtain;
[tex]4(y-2)=-(x-4)[/tex]
Expand using the distributive property;
[tex]4y-8=-x+4[/tex]
[tex]4y+x=4+8[/tex]
[tex]x+4y=12[/tex]
Answer: Option D.
Step-by-step explanation:
The Standard form of the equation of then line is:
[tex]Ax+By=C[/tex]
Where A, B and C are integers.
The Point-slope form of the equationof the line is:
[tex]y-y_1=m(x-x_1)[/tex]
Where m is the slope of the line and ([tex]x_1,y_1[/tex]) is a point of the line.
Given the points (4,2) and (8,1), you can find the slope with the formula [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]. Then:
[tex]m=\frac{1-2}{8-4}=-\frac{1}{4}[/tex]
Substitute the slope and the point (4,2 ) into [tex]y-y_1=m(x-x_1)[/tex]:
[tex]y-2=-\frac{1}{4}(x-4)[/tex]
To write in Standard form, move the variables to one sides of the equation. Then:
[tex]y-2=-\frac{1}{4}(x-4)\\\\4(y-2)=x-4\\4y-8=-x+4\\x+4y=4+8\\x+4y=12[/tex]