Respuesta :

Answer:

[tex]B = (8,-6)[/tex]

Step-by-step explanation:

Given

[tex]A = (4,8)[/tex]

[tex]M = (6,1)[/tex] -- Midpoint

Required

Find B

This question will be solved using midpoint formula;

[tex]M(x,y) = (\frac{x_1 + x_2}{2},\frac{y_1 + y_2}{2})[/tex]

Where

[tex]A(x_1,y_1) = (4,8)[/tex]

[tex]M(x,y) = (6,1)[/tex]

Substitute these values in the midpoint formula;

[tex](6,1) = (\frac{4 + x_2}{2},\frac{8+y_2}{2})[/tex]

By comparison; we have:

[tex]\frac{4 + x_2}{2} = 6[/tex] -- (1)

[tex]\frac{8 + y_2}{2} = 1[/tex] -- (2)

Solving (1)

[tex]\frac{4 + x_2}{2} = 6[/tex]

Multiply both sides by 2

[tex]4 + x_2 = 12[/tex]

Subtract 4 from both sides

[tex]x_2 = 8[/tex]

Solving (2)

[tex]\frac{8 + y_2}{2} = 1[/tex]

Multiply both sides by 2

[tex]8 + y_2 = 2[/tex]

Subtract 8 from both sides

[tex]y_2 = -6[/tex]

Hence:

[tex]B = (8,-6)[/tex]