Respuesta :
Answer:
B(7 , 4)
Step-by-step explanation:
(x₁ , y₁) = A(-2 , -7)
(x₂ , y₂) = Point B
Midpoint(5.5, -1.5)
[tex]Midpoint= (\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})\\\\\\(\frac{-2+x_{2}}{2} , \frac{-7+y_{2}}{2} = (2.5 , -1.5)[/tex]
Compare x-coordinates & y-coordinates
[tex]\frac{-2+x_{2}}{2}=2.5 ; \frac{-7+y_{2}}{2}=-1.5[/tex]
-2+ x₂ = 2.5*2 ; -7+ y₂ = -1.5*2
-2+ x₂ = 5 ; -7 +y₂ = -3
x₂ = 5 +2 ; y₂ = -3 + 7
x₂ = 7 ; y₂ = 4
B(7 , 4)
Answer:
B(7 , 4)
Step-by-step explanation:
(x₁ , y₁) = A(-2 , -7)
(x₂ , y₂) = Point B
Midpoint(5.5, -1.5)
Compare x-coordinates & y-coordinates
-2+ x₂ = 2.5*2 ; -7+ y₂ = -1.5*2
-2+ x₂ = 5 ; -7 +y₂ = -3
x₂ = 5 +2 ; y₂ = -3 + 7
x₂ = 7 ; y₂ = 4
B(7 , 4)
Step-by-step explanation: