Respuesta :

Answer:

i. 9

ii. 14

iii. 405

iv. [tex]\frac{n(n-3)}{2}[/tex]

Step-by-step explanation:

The number of diagonals in a polygon of n sides can be determined by:

[tex]\frac{n(n-3)}{2}[/tex]

where n is the number of its sides.

i. For a hexagon which has 6 sides,

number of diagonals = [tex]\frac{6(6-3)}{2}[/tex]

                                   = [tex]\frac{18}{2}[/tex]

                                   = 9

The number of diagonals in a hexagon is 9.

ii. For a heptagon which has 7 sides,

number of diagonals = [tex]\frac{7(7-3)}{2}[/tex]

                                   = [tex]\frac{28}{2}[/tex]

                                   = 14

The number of diagonals in a heptagon is 14.

iii. For a 30-gon;

number of diagonals = [tex]\frac{30(30-3)}{2}[/tex]

                                          = [tex]\frac{810}{2}[/tex]

                                         = 405

The number of diagonals in a 30-gon is 405.

iv. For a n-gon,

number of diagonals = [tex]\frac{n(n-3)}{2}[/tex]

The number of diagonals in a n-gon is [tex]\frac{n(n-3)}{2}[/tex]