Respuesta :
Answer:
[tex]\displaystyle \int\limits^5_1 {x^4(1 + 2x^5)} \, dx = \frac{9768748}{5}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int\limits^5_1 {x^4(1 + 2x^5)} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = 1 + 2x^5[/tex]
- [u] Differentiate [Basic Power Rule, Derivative Properties]: [tex]\displaystyle du = 10x^4 \ dx[/tex]
- [Bounds] Switch: [tex]\displaystyle \left \{ {{x = 5,\ u = 1 + 2(5)^5 = 6251} \atop {x=1,\ u = 1 + 2(1)^5 = 3}} \right.[/tex]
Step 3: Integrate Pt. 2
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^5_1 {x^4(1 + 2x^5)} \, dx = \frac{1}{10}\int\limits^5_1 {10x^4(1 + 2x^5)} \, dx[/tex]
- [Integral] U-Substitution: [tex]\displaystyle \int\limits^5_1 {x^4(1 + 2x^5)} \, dx = \frac{1}{10}\int\limits^{6251}_3 {u} \, du[/tex]
- [Integral] Reverse Power Rule: [tex]\displaystyle \int\limits^5_1 {x^4(1 + 2x^5)} \, dx = \frac{1}{10} \bigg( \frac{u^2}{2} \bigg) \bigg| \limits^{6251}_3[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^5_1 {x^4(1 + 2x^5)} \, dx = \frac{1}{10}(19537496)[/tex]
- Simplify: [tex]\displaystyle \int\limits^5_1 {x^4(1 + 2x^5)} \, dx = \frac{9768748}{5}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration