Answer:
[tex]v_2 = 33.2m/s[/tex]
Explanation:
Given
Before Collision
[tex]m_1 = 2000kg[/tex]
[tex]u_1 = 21m/s[/tex]
[tex]m_2 = 1000kg[/tex]
[tex]u_2 = -15m/s[/tex]
After Collision
[tex]m_1 = 2000kg[/tex]
[tex]v_1 = -3.1m/s[/tex]
[tex]m_2 = 1000kg[/tex]
[tex]v_2 = ???[/tex] ------ Required
As analyzed above;
To solve for v2, we simply make use of the law of conservation of momentum formula;
which states:
[tex]m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2[/tex]
Substitute values in the above formula
[tex]2000 * 21 + 1000 * -15 = 2000 * -3.1 + 1000 * v_2[/tex]
[tex]42000 - 15000 = -6200 + 1000v_2[/tex]
[tex]27000 = -6200 + 1000v_2[/tex]
Collect Like Terms
[tex]27000 + 6200 =1000v_2[/tex]
[tex]33200 =1000v_2[/tex]
Divide through by 1000
[tex]v_2 = \frac{33200}{1000}[/tex]
[tex]v_2 = 33.2m/s[/tex]
Hence, the speed the other drone is 33.2m/s