Respuesta :

Answer:

0.14%

Explanation:

The computation of % is shown below:

As we know that

     HClO <=> H+ + ClO-

I         0.015          0      0

C          -a            +a     +a

E      0.015-a        a       a

Now

[tex]Ka = \frac{[H+][ClO-]}{[HClO]}[/tex]

[tex]= \frac{a^{2}}{(0.015 - a)} \\\\= 3.0 \times 10^{-8}[/tex]

[tex]a^{2} + 3.0 \times 10^{-8}a - 4.5 \times 10^{-10} = 0[/tex]

Now Solves the quadratic equation i.e.

[tex]a = 2.120 \times 10^{-5}[/tex]

[tex][H+] = a = 2.120 \times 10^{-5} M[/tex]

So,

% ionization is

[tex]= \frac{[H+]}{[HClO]}_{initial} \times 100\%\\\\= 2.120 \times 10^{-5}\div0.015 \times 100\%[/tex]

= 0.14%

Hence, the percentage of hypochlorous ionization is 0.14%