Respuesta :

Answer:

2.7 in²

Step-by-step explanation:

Given:

∆BAC ~ ∆EDF

Area of BAC = 6 in²

EF = 2 in

BC = 3 in

Required:

Area of ∆EDF

SOLUTION:

Let x = area of ∆EDF

[tex] \frac{6 in^2}{x} = (\frac{3 in}{2 in})^2 [/tex] (theorem of area of similar triangles)

[tex] \frac{6 in^2}{x} = (\frac{3 in}{2 in})^2 [/tex]

[tex] \frac{6}{x} = \frac{9}{4} [/tex]

Cross multiply:

[tex] 6*4 = 9*x [/tex]

[tex] 24 = 9x [/tex]

Divide both sides by 9

[tex] \frac{24}{9} = x [/tex]

[tex] 2.67 = x [/tex]

Area of ∆EDF = 2.7 in²