Respuesta :
Answer:
i. Colonel is about 201 feet away from the fire.
ii. Sarge is about 125 feet away from the fire.
Step-by-step explanation:
Let the Colonel's location be represented by A, the Sarge's by B and that of campfire by C.
The total angle at the campfire from both the Colonel and Sarge = [tex]59^{0}[/tex] + [tex]34^{0}[/tex]
= [tex]93^{0}[/tex]
Thus,
<CAB = [tex]90^{0}[/tex] - [tex]59^{0}[/tex] = [tex]31^{0}[/tex]
<CBA = [tex]90^{0}[/tex] - [tex]34^{0}[/tex] = [tex]56^{0}[/tex]
Sine rule states;
[tex]\frac{a}{Sin A}[/tex] = [tex]\frac{b}{Sin B}[/tex] = [tex]\frac{c}{Sin C}[/tex]
i. Colonel's distance from the campfire (b), can be determined by applying the sine rule;
[tex]\frac{b}{Sin B}[/tex] = [tex]\frac{c}{Sin C}[/tex]
[tex]\frac{b}{Sin 56^{0} }[/tex] = [tex]\frac{242}{Sin 93^{0} }[/tex]
[tex]\frac{b}{0.8290}[/tex] = [tex]\frac{242}{0.9986}[/tex]
cross multiply,
b = [tex]\frac{0.8290*242}{0.9986}[/tex]
= 200.8993
Colonel is about 201 feet away from the fire.
ii. Sarge's distance from the campfire (a), can be determined by applying the sine rule;
[tex]\frac{a}{Sin A}[/tex] = [tex]\frac{c}{Sin C}[/tex]
[tex]\frac{a}{Sin 31^{0} }[/tex] = [tex]\frac{242}{Sin 93^{0} }[/tex]
[tex]\frac{a}{0.5150}[/tex] = [tex]\frac{242}{0.9986}[/tex]
cross multiply,
a = [tex]\frac{0.5150*242}{0.9986}[/tex]
= 124.8073
Sarge is about 125 feet away from the fire.