Answer: A. p-value = 0.04
B. z = - 1.77
Step-by-step explanation: To calculate z test statistic or z-score for a population proportion, first find the proportion (p-hat):
[tex]p_{hat}[/tex] = [tex]\frac{317}{500}[/tex] = 0.634
Then determine the standard deviation:
[tex]\sigma = \sqrt{\frac{p_{hat}(1-p_{hat})}{n} }[/tex]
[tex]\sigma = \sqrt{\frac{0.634(0.366)}{500} }[/tex]
[tex]\sigma = \sqrt{0.00046 }[/tex]
[tex]\sigma[/tex] = 0.0215
Calculating z-score:
[tex]z=\frac{p_{hat}-p}{\sigma}[/tex]
[tex]z=\frac{0.634-0.672}{0.0215}[/tex]
[tex]z=-1.77[/tex]
Z-test for the population proportion is z = - 1.77
P-value is the probability describing the data if null hypothesis is true, i.e.:
P(z< -1.77)
Using z-score table, the probability is:
P(z< -1.77) = 0.04
p-value = 0.04
P-value for this test is p-value = 0.04.