Respuesta :

Answer:

In the attached graph

Step-by-step explanation:

To graph the function chose the values of x when subtract 2 from them give perfect cube numbers (number can be put in the form a³)

∵ 8 can be put in the form of 2³

- Put x - 2 = 8 ⇒ add 2 to both sides

∴ x = 10

∵ -8 can be put in the form of -2³

- Put x - 2 = -8 ⇒ add 2 to both sides

∴ x = -6

∵ 27 can be put in the form of 3³

- Put x - 2 = 27 ⇒ add 2 to both sides

∴ x = 29

∵ -27 can be put in the form of -3³

- Put x - 2 = -27 ⇒ add 2 to both sides

∴ x = -25

∵ 0 can be put in the form of 0³

- Put x - 2 = 0 ⇒ add 2 to both sides

∴ x = 2

Lets find the corresponding values of f(x) for x = -25, -6, 2 , 10 and 29

∵ [tex]f(x)=\sqrt[3]{x-2}[/tex]

∵ x = -25

∴ [tex]f(-25)=\sqrt[3]{-25-2}=\sqrt[3]{-27}=-3[/tex]

∵ x = -6

∴ [tex]f(-6)=\sqrt[3]{-6-2}=\sqrt[3]{-8}=-2[/tex]

∵ x = 2

∴ [tex]f(2)=\sqrt[3]{2-2}=\sqrt[3]{0}=0[/tex]

∵ x = 10

∴ [tex]f(10)=\sqrt[3]{10-2}=\sqrt[3]{8}=2[/tex]

∵ x = 29

∴ [tex]f(29)=\sqrt[3]{29-2}=\sqrt[3]{27}=3[/tex]

Now lets plot the points on the graph paper

Look to the attached graph

(-25 , -3) , (-6 , -2) , (2 , 0) , (10 , 2) , (29 , 3)

The x-intercept is (2 , 0)

The y-intercept is (0 , -1.26)

Ver imagen Ashraf82