Respuesta :

Answer:

S = 2π/9 [³/₂√10 − ½ ln(-3 + √10)]

S ≈ 3.946

Step-by-step explanation:

For a curve rotated about the x-axis, the surface area is:

S = ∫ₐᵇ 2πy ds,

where ds = √(1 + (dy/dx)²) dx.

y = e⁻³ˣ

dy/dx = -3e⁻³ˣ

ds = √(1 + (-3e⁻³ˣ)²) dx

S = ∫₀°° 2πe⁻³ˣ √(1 + (-3e⁻³ˣ)²) dx

If u = -3e⁻³ˣ, then du = 9e⁻³ˣ dx, or du/9 = e⁻³ˣ dx.

When x = 0, u = -3.  When x = ∞, u = 0.

S = ∫₋₃⁰ 2π √(1 + u²) (du/9)

S = 2π/9 ∫₋₃⁰ √(1 + u²) du

S = 2π/9 [ ½ u √(1 + u²) + ½ ln|u + √(1 + u²)| ] |₋₃⁰

S = 2π/9 {[0] − [ -³/₂√10 + ½ ln(-3 + √10) ]}

S = 2π/9 [³/₂√10 − ½ ln(-3 + √10)]

S ≈ 3.946

The area of a surface is the amount of space it occupies.

The area of the resulting surface is [tex]3.947[/tex] square units

The infinite curve is given as:

[tex]y =e^{-3x},\ \ x \ge 0[/tex]

Integrate y, with respect to x

[tex]\frac{dy}{dx} = -3e^{-3x}[/tex]

The area of the curve about the x-axis is:

[tex]S = \int\limits^a_b {2\pi y} \, ds[/tex]

[tex]ds = \sqrt{(1 + (\frac{dy}{dx})^2)}\ dx[/tex]

Substitute [tex]\frac{dy}{dx} = -3e^{-3x}[/tex] in [tex]ds = \sqrt{(1 + (\frac{dy}{dx})^2)}\ dx[/tex]

[tex]ds = \sqrt{(1 + (-3e^{-3x})^2)}\ dx[/tex]

Let

[tex]u = -3e^{-3x}[/tex]

So:

[tex]\frac{du}{dx} = 9e^{-3x}[/tex]

Make [tex]e^{-3x}\ dx[/tex] the subject

[tex]e^{-3x}\ dx = \frac{du}9[/tex]

[tex]x \ge 0[/tex] means that, the value of x is: [tex][0,\infty][/tex]

When [tex]x = 0[/tex]

[tex]u = -3e^{-3x}[/tex]

[tex]u = -3 \times e^{-3 \times 0} = -3[/tex]

When [tex]x = \infty[/tex]

[tex]u = -3 \times e^{-3 \times \infty} = 0[/tex]

Recall that:

[tex]S = \int\limits^a_b {2\pi y} \, ds[/tex]

Substitute [tex]ds = \sqrt{(1 + (-3e^{-3x})^2)}\ dx[/tex] and [tex]y =e^{-3x}[/tex]

This gives

[tex]S = \int\limits^0_{-3} {2\pi (e^{-3x}) \sqrt{(1 + (-3e^{-3x})^2)}\ dx}[/tex]

Rewrite as:

[tex]S = \int\limits^0_{-3} {2\pi \sqrt{(1 + (-3e^{-3x})^2)}\ (e^{-3x})\ dx}[/tex]

Substitute [tex]u = -3e^{-3x}[/tex] and [tex]e^{-3x}\ dx = \frac{du}9[/tex]

[tex]S = \int\limits^0_{-3} {2\pi \sqrt{(1 + u^2)}\ \frac{du}9}[/tex]

This gives

[tex]S = \frac{2\pi}{9} \int\limits^0_{-3} {\sqrt{(1 + u^2)}\ du}[/tex]

Integrate with respect to u

[tex]S = \frac{2\pi}{9}[\frac 12 u\sqrt{(1 + u^2)} + \frac 12\ln|u + \sqrt{1 + u^2}|\ ]|\limits^0_{-3}[/tex]

Substitute 0 and -3 for u

[tex]S = \frac{2\pi}{9}([\frac 12\times 0 \times \sqrt{(1 + 0^2)} + \frac 12\ln|0 + \sqrt{1 + 0^2} ] - [\frac 12 \times (-3) \times \sqrt{(1 + (-3)^2)} + \frac 12\ln|-3 + \sqrt{1 + (-3)^2} ] )[/tex]

[tex]S = \frac{2\pi}{9}([0] - [\frac 12 \times (-3) \times \sqrt{(1 + (-3)^2)} + \frac 12\ln|-3 + \sqrt{1 + (-3)^2} ] )[/tex]

[tex]S = \frac{2\pi}{9}(- [\frac 12 \times (-3) \times \sqrt{(1 + (-3)^2)} + \frac 12\ln|-3 + \sqrt{1 + (-3)^2} ] )[/tex]

[tex]S = \frac{2\pi}{9}(- [\frac{-3}2 \times \sqrt{(1 + (-3)^2)} + \frac 12\ln|-3 + \sqrt{1 + (-3)^2} ] )[/tex]

[tex]S = \frac{2\pi}{9}( [\frac{3}2 \times \sqrt{10} - \frac 12\ln(-3 + \sqrt{10}\ )] )[/tex]

[tex]S = \frac{2\pi}{9}( [4.743 + 0.909] )[/tex]

[tex]S = \frac{2\pi}{9}( 5.652 )[/tex]

[tex]S = 3.947[/tex]

Hence, the area of the resulting surface is [tex]3.947[/tex] square units

Read more about areas at:

https://brainly.com/question/3547303