Triangle ABC is an isosceles triangle in which side AB = AC. What is the perimeter of triangle ABC? 5 + StartRoot 10 EndRoot units 10 + StartRoot 10 EndRoot units 10 StartRoot 10 EndRoot units 50 units

Respuesta :

Answer:

Option (2)

Step-by-step explanation:

This question is incomplete; find the picture attached which makes this question complete.

Vertices of the given triangle are A(-2, -4), B(2, -1) and C(3, -4).

Length of AB = [tex]\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]

AB = [tex]\sqrt{(2+2)^2+(-1+4)^2}[/tex]

     = [tex]\sqrt{16+9}[/tex]

     = 5 units

Since AB = AC

AC = 5 units

Similarly, BC = [tex]\sqrt{(3-2)^2+(-4+1)^2}[/tex]

BC = [tex]\sqrt{10}[/tex] units

Therefore, perimeter of the given triangle = AB + AC + BC

                                                                      = 5 + 5 + √10

                                                                      = (10 + √10) units

Option (2) will be the answer.

Ver imagen eudora

Answer:

b

Step-by-step explanation: