What is the sum of the following four vectors in (a) unit-vector notation, and as (b) a magnitude and (c) an angle? Positive angles are counterclockwise from the positive direction of the x axis; negative angles are clockwise. = 4.00 m, at 65.0° = 5.00 m, at -235°

Respuesta :

Answer:

The angle will be "124°". The further explanation is given below.

Explanation:

As we know,

[tex]\vec{A}=2m\hat{i}+3m\hat{j}[/tex]

[tex]\vec{B}=4Cos65^{\circ}\hat{i}+4Sin65^{\circ}\hat{j}[/tex]

[tex]\vec{C}=-4m\hat{i}-6m\hat{j}[/tex]

[tex]\vec{D}=5Cos55^{\circ}\hat{-i}+5Sin55^{\circ}\hat{j}[/tex]

(a)...

Let the resultant of [tex]\vec{A}[/tex], [tex]\vec{B}[/tex], [tex]\vec{C}[/tex] and [tex]\vec{D}[/tex] will be [tex]\vec{R}[/tex], then

⇒  [tex]\vec{R}=\vec{A}+\vec{B}+\vec{C}+\vec{D}[/tex]

On putting values, we get

⇒      [tex]=(2+4Cos65^{\circ}-4+5Cos55^{\circ})\hat{i}+(3+4Sin65^{\circ}-6+5Sin55^{\circ})\hat{j}[/tex]

⇒      [tex]=3.17741m(\hat{i})+4.721m(\hat{j})[/tex]

(b)...

On squaring both sides, we get

⇒  [tex]\left |\vec{R} \right |=\sqrt{(3.17741)^{2}+(4.721)^{2}}[/tex]

⇒       [tex]=5.7 \ m[/tex]

(c)...

Let the resultant angle will be "[tex]\theta[/tex]",

⇒  [tex]tan(180-\theta)=\frac{4.721}{3.17741}[/tex]

⇒  [tex]180-\theta=56.06[/tex]

⇒  [tex]\theta=124^{\circ}[/tex]