Respuesta :

Answer:

A. You can not use the Pythagorean theorem because you would need the length of at least two sides but the triangle only provides the length of one.

B. x ≈ 7 ft.   y ≈ 6 ft.

Step-by-step explanation:

Sin(51) = [tex]\frac{x}{9}[/tex]

Sin(51)*9 = x

x = 6.99431

x ≈ 7 ft.

Now you can use the Pythagorean theorem.

[tex]a^{2} +b^{2} =c^{2}[/tex]

[tex]7^{2} +b^{2} =9^{2}[/tex]

[tex]49+b^{2} =81[/tex]

[tex]b^{2}[/tex] = 32

[tex]\sqrt{b^{2} } =\sqrt{32}[/tex]

b = 5.65685

y ≈ 6 ft.

Or, continue to use the cosine.

Cos(51) = [tex]\frac{y}{9}[/tex]

Cos(51)*9 = y

y = 5.66388

y ≈ 6 ft.

Answer Check

We know c = 9 ft.

[tex]a^{2}+ b^{2}= c^{2} \\7^{2}+ 6^{2}= c^{2}\\49+36=c^{2}\\ 85 = c^{2} \\\sqrt{85} =\sqrt{c^{2} } \\c=9.21954\\c=9 ft.[/tex]