Respuesta :

Answer:

G. sqrt (74)

Step-by-step explanation:

Use the Pythagorean theorem to find AB, which is represented by c in the theorem.

a^2 + b^2 = c^2

7^2 + 5^2 = c^2

49 + 25 = c^2

74 = c^2    (Take the square root of each side)

c = sqrt (74)

So, AB = sqrt (74)

Length AB is an illustration of Pythagoras theorem.

The length of AB is (G) [tex]\mathbf{\sqrt{74}}[/tex]

The given figure is a right-angled triangle.

Such that:

AC = 7

BC = 5

AB = ?? The hypotenuse

Using Pythagoras theorem, we have:

[tex]\mathbf{AB^2 = AC^2 + BC^2}[/tex]

Substitute values for AC and BC

[tex]\mathbf{AB^2 = 7^2 + 5^2}[/tex]

Evaluate squares

[tex]\mathbf{AB^2 = 49 + 25}[/tex]

Add

[tex]\mathbf{AB^2 = 74}[/tex]

Take square roots

[tex]\mathbf{AB = \sqrt{74}}[/tex]

Hence, the value of AB is (G) [tex]\mathbf{\sqrt{74}}[/tex]

Read more about Pythagoras theorem at:

https://brainly.com/question/15138986