Respuesta :
Answer with Explanation:
We are given that
Mass of person,M=80 kg
Radius,r=3.5 m
Moment of inertia of merry,I=[tex]950 kgm^2[/tex]
Angular velocity of platform=[tex]\omega=0.85rad/s[/tex]
1.Law of conservation of angular momentum
[tex]I\omega=I'\omega'[/tex]
Where[tex]I'=950+80(3.5)^2[/tex]
Substitute the values
[tex]950\times 0.85=(950+80(3.5)^2)\omega'[/tex]
[tex]\omega'=\frac{950\times 0.85}{950+80(3.5)^2}=0.418rad/s[/tex]
Angular velocity when the person reaches the edge =0.418 rad/s
2.Rotational kinetic energy of the system before the person's walk
[tex]K_i=\frac{1}{2}I\omega^2=\frac{1}{2}(950)(0.85)^2=343.2 J[/tex]
3.Rotational kinetic energy of the system after the person's walk
[tex]K_f=\frac{1}{2}(950+80(3.5)^2)\times (0.418)^2[/tex]
[tex]K_f=168.6 J[/tex]
(1) The angular velocity of the person at the edge is 0.42 rad/s.
(2) The initial rotational kinetic energy is 343J.
(3) the final rotational kinetic energy is 170J.
Rotational Motion:
(1) At the center of the merry-go-round, the moment of inertia of the person is zero, since the distance from the center is zero.
At the edge, the moment of inertia of the person is:
I = mr²
where m is the mass = 80kg
r is the radius = 3.5m
I = 80×3.5²
I = 980 kgm²
The moment of inertia of the merry-go-round is 950 kgm².
According to the conservation of angular momentum:
Initial angular momentum = final angular momentum
Now, the angular momentum is given by:
L = Iω
where ω is the angular velocity
let the initial angular momentum be ω = 0.85 rad/s (given)
and the final angular momentum be ω'
So,
[tex]950\omega = (950+980)\omega'\\\\950\times0.85 = 1930\omega'[/tex]
ω' = 0.42 rad/s
(2) The initial rotational kinetic energy is given by:
[tex]KE_i=\frac{1}{2}I\omega^2\\\\KE_i = \frac{1}{2}\times950\times0.85^2[/tex]
KE[tex]_i[/tex] = 343J
(3) The final rotational kinetic energy is given by:
[tex]KE_f=\frac{1}{2}I'\omega'^2\\\\KE_f = \frac{1}{2}\times(950+980)\times0.42^2[/tex]
KE[tex]__f[/tex] = 170J
Learn more about rotational motion:
https://brainly.com/question/18807782?referrer=searchResults