Answer:
The gravitational acceleration is 5.03 m/s² on the surface of the planet.
Explanation:
Frequency:
The number of complete oscillation per unit second is called frequency.
[tex]frequency=\frac{\textrm {Number of oscillation}}{Time}[/tex]
Angular frequency:
Angular frequency is the product of the oscillation frequency and the angle thought which the object moves.
Angular velocity [tex](\omega)=2\pi f[/tex]
Given that,
Number of oscillation= 247, time= 793 s, length of the pendulum=1.31 m
[tex]f=\frac{\textrm {Number of oscillation}}{Time}[/tex]
[tex]=\frac{247}{793}[/tex] Hz.
Angular velocity
[tex]\omega=2\pi f[/tex]
[tex]=2 \times \pi \times \frac{247}{793}[/tex]
=1.96 rad/s
We know that,
[tex]g=\omega^2l[/tex]
g= gravitational force of the planet
[tex]l[/tex] = length of the pendulum
[tex]\omega[/tex] = angular velocity
[tex]g=(1.96)^2\times 1.31[/tex] m/s²
= 5.03 m/s²
The gravitational acceleration on the surface of the planet is 5.03 m/s².