How many different twotwo​-letter passwords can be formed from the letters
Upper A, Upper B, Upper C, Upper D, Upper E, Upper F, Upper G and Upper H
A, B, C, D, E, F, G and H
if no repetition of letters is​ allowed?

Respuesta :

Answer:

[tex]70[/tex]

Step-by-step explanation:

GIVEN: two two​-letter passwords can be formed from the letters  A, B, C, D, E, F, G and H.

TO FIND: How many different two two​-letter passwords can be formed if no repetition of letters is​ allowed.

SOLUTION:

Total number of different letters [tex]=8[/tex]

for two two​-letter passwords [tex]4[/tex] different are required.

Number of ways of selecting [tex]4[/tex] different letters from [tex]8[/tex] letters[tex]=^8C_4[/tex]

                                                                                                   [tex]=\frac{8!}{4!4!}[/tex]

                                                                                                  [tex]=70[/tex]

Hence there are [tex]70[/tex] different two-letter passwords can be formed using [tex]8[/tex] letters.