contestada

The variables A, B, and C represent polynomials where A=x^2, B=3x+2, and C=x-3. What is AB-C^2 in simplest form?

Respuesta :

Answer:

AB-C^2 = 3x^3 + x^2 + 9

Step-by-step explanation:

Hi

AB = (x^2)*(3x+2)= 3x^3 + 2x^2

C^2= (x-3)^2 = x^2 - 9

So

AB-C^2 = 3x^3 + 2x^2 - x^2 + 9 = 3x^3 + x^2 + 9

The simplest form of AB-[tex]C^{2}[/tex] is [tex]3x^{3} +x^{2} +6x-9[/tex].

Step-by-step explanation:

Given,

A = [tex]x^{2}[/tex]

B = [tex]3x+2[/tex]

C = [tex]x-3[/tex]

To find,

AB-[tex]C^{2}[/tex]

Putting the values of A, B, C we get

AB-[tex]C^{2}[/tex]

= [tex]x^{2} (3x+2) - (x-3)^{2}[/tex]

= [tex]3x^{3} +2x^{2} -(x^{2} -6x+9)[/tex]

= [tex]3x^{3}+2x^{2} -x^{2} +6x-9[/tex]

=[tex]3x^{3} +x^{2} +6x-9[/tex]

Here is the answer.