Respuesta :
Answer:
A. P (x ≤ 6) = 0.9452
B. P (x > 12) = 0.021
C. P (x ≥ 12) = 0.2968
Step-by-step explanation:
Let's recall that in a binomial distribution the probability of success p in each trial is a fixed value and the result of each trial is independent of any previous trial.
A. Let's find out the probability that at most six students will enroll if the college offers admission to ten more students, using the following binomial distribution table:
Binomial distribution (n=10, p=0.4)
f(x) F(x) 1 - F(x)
x Pr[X = x] Pr[X ≤ x]
0 0.0060 0.0060
1 0.0403 0.0464
2 0.1209 0.1673
3 0.2150 0.3823
4 0.2508 0.6331
5 0.2007 0.8338
6 0.1115 0.9452
7 0.0425 0.9877
8 0.0106 0.9983
9 0.0016 0.9999
10 0.0001 1.0000
P (x ≤ 6) = 0.9452
B. Let's find that more than 12 will actually enroll if admission is offered to 20 students, using this second binomial distribution table:
Binomial distribution (n=20, p=0.4)
f(x) F(x) 1 - F(x)
x Pr[X = x] Pr[X ≤ x]
0 0.0000 0.0000
1 0.0005 0.0005
2 0.0031 0.0036
3 0.0123 0.0160
4 0.0350 0.0510
5 0.0746 0.1256
6 0.1244 0.2500
7 0.1659 0.4159
8 0.1797 0.5956
9 0.1597 0.7553
10 0.1171 0.8725
11 0.0710 0.9435
12 0.0355 0.9790
13 0.0146 0.9935
14 0.0049 0.9984
15 0.0013 0.9997
16 0.0003 1.0000
17 0.0000 1.0000
18 0.0000 1.0000
19 0.0000 1.0000
20 0.0000 1.0000
P (x ≤ 12) = 0.979, then:
P (x > 12) = 1 - 0.979 = 0.021
C. Let's find the probability that at least 12 out of 15 students will actually enroll if 70% of those students admitted actually enroll, using this new binomial distribution table:
Binomial distribution (n=15, p=0.7)
f(x) F(x) 1 - F(x)
x Pr[X = x] Pr[X ≤ x]
0 0.0000 0.0000
1 0.0000 0.0000
2 0.0000 0.0000
3 0.0001 0.0001
4 0.0006 0.0007
5 0.0030 0.0037
6 0.0116 0.0152
7 0.0348 0.0500
8 0.0811 0.1311
9 0.1472 0.2784
10 0.2061 0.4845
11 0.2186 0.7031
12 0.1700 0.8732
13 0.0916 0.9647
14 0.0305 0.9953
15 0.0047 1.0000
P (x ≤ 11) = 0.7031, then:
P (x ≥ 12) = 1 - 0.7031 = 0.2969, or,
P (x ≥ 12) = P(12) + P(13) + P(14) + P(15)
P (x ≥ 12) = 0.17 + 0.0916 + 0.0305 + 0.0047
P (x ≥ 12) = 0.2968