Find the critical numbers of the function. (Enter your answers as a comma-separated list. Use n to denote any arbitrary integer values. If an answer does not exist, enter DNE.) g(θ) = 8θ − 2 tan(θ)

Respuesta :

Answer:

[tex]\theta = \cos^{-1} (\pm \frac{1}{2} )[/tex]

Step-by-step explanation:

The function is [tex]g(\theta) = 8\cdot \theta - 2\cdot \tan \theta[/tex], whose first derivative is:

[tex]g'(\theta) = 8 - 2\cdot \sec^{2}\theta[/tex]

Let equalize the derivative to zero:

[tex]8 - 2\cdot \sec^{2}\theta=0[/tex]

[tex]\sec^{2}\theta = 4[/tex]

[tex]1 = 4\cdot \cos^{2}\theta[/tex]

[tex]\cos \theta = \pm\sqrt {\frac{1}{4} }[/tex]

[tex]\cos \theta = \pm \frac{1}{2}[/tex]

The solutions are given by the following inverse trigonometric function:

[tex]\theta = \cos^{-1} (\pm \frac{1}{2} )[/tex]