Answer : The pressure after the temperature change is, 0.752 atm
Explanation :
Gay-Lussac's Law : It is defined as the pressure of the gas is directly proportional to the temperature of the gas at constant volume and number of moles.
[tex]P\propto T[/tex]
or,
[tex]\frac{P_1}{T_1}=\frac{P_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure = 0.82 atm
[tex]P_2[/tex] = final pressure = ?
[tex]T_1[/tex] = initial temperature = [tex]21^oC=273+21=294K[/tex]
[tex]T_2[/tex] = final temperature = [tex]-3.5^oC=273+(-3.5)=269.5K[/tex]
Now put all the given values in the above equation, we get:
[tex]\frac{0.82atm}{294K}=\frac{P_2}{269.5K}[/tex]
[tex]P_2=0.752atm[/tex]
Thus, the pressure after the temperature change is, 0.752 atm