Respuesta :
Answer:
Answer is all real numbers.
<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>
---------(-3)---------------------(6)-------------
Step-by-step explanation:
6b<36
Divide both sides by 6:
b<6
or
2b+12>6
Subtract 12 on both sides:
2b>-6
Divide both sides by 2:
b>-3
So we want to graph b<6 or b>-3:
o~~~~~~~~~~~~~~~~~~~~~~~~~~ b>-3
~~~~~~~~~~~~~~~~~~~~~~~~o b<6
_______(-3)____________(6)___________
So again "or" is a key word! Or means wherever you see shading for either inequality then that is a solution to the compound inequality. You see shading everywhere so the answer is all real numbers.
<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>
---------(-3)---------------------(6)-------------
Answer:
All real numbers [tex](-\infty, \infty)[/tex]
Step-by-step explanation:
First we solve the following inequality
[tex]6b < 36[/tex]
Divide by 6 both sides of the inequality
[tex]b<\frac{36}{6}\\\\b<6[/tex]
The set of solutions is:
[tex](-\infty, 6)[/tex]
Now we solve the following inequality
[tex]2b + 12 > 6[/tex]
Subtract 12 on both sides of the inequality
[tex]2b + 12-12 > 6-12[/tex]
[tex]2b> -6[/tex]
Divide by 2 on both sides of the inequality
[tex]\frac{2}{2}b> -\frac{6}{2}[/tex]
[tex]b> -3[/tex]
The set of solutions is:
[tex](-3, \infty)[/tex]
Finally, the set of solutions for composite inequality is:
[tex](-\infty, 6)[/tex] ∪ [tex](-3, \infty)[/tex]
This is: All real numbers [tex](-\infty, \infty)[/tex]