Respuesta :

Answer:

Answer is all real numbers.

<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>

---------(-3)---------------------(6)-------------

Step-by-step explanation:

6b<36

Divide both sides by 6:

b<6

or

2b+12>6

Subtract 12 on both sides:

2b>-6

Divide both sides by 2:

b>-3

So we want to graph b<6 or b>-3:

               o~~~~~~~~~~~~~~~~~~~~~~~~~~ b>-3

~~~~~~~~~~~~~~~~~~~~~~~~o                        b<6

_______(-3)____________(6)___________

So again "or" is a key word! Or means wherever you see shading for either inequality then that is a solution to the compound inequality.  You see shading everywhere so the answer is all real numbers.

<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>

---------(-3)---------------------(6)-------------

Answer:

All real numbers [tex](-\infty, \infty)[/tex]

Step-by-step explanation:

First we solve the following inequality

[tex]6b < 36[/tex]

Divide by 6 both sides of the inequality

[tex]b<\frac{36}{6}\\\\b<6[/tex]

The set of solutions is:

[tex](-\infty, 6)[/tex]

Now we solve the following inequality

[tex]2b + 12 > 6[/tex]

Subtract 12 on both sides of the inequality

[tex]2b + 12-12 > 6-12[/tex]

[tex]2b> -6[/tex]

Divide by 2 on both sides of the inequality

[tex]\frac{2}{2}b> -\frac{6}{2}[/tex]

[tex]b> -3[/tex]

The set of solutions is:

[tex](-3, \infty)[/tex]

Finally, the set of solutions for composite inequality is:

[tex](-\infty, 6)[/tex]  ∪ [tex](-3, \infty)[/tex]

This is: All real numbers [tex](-\infty, \infty)[/tex]