In the figure, AB is divided into equal parts. The coordinates of point A are (2, 4), and the coordinates of point B are (10, 6). Match each pair of coordinates to the corresponding point on AB.

Diving the length AB into equal parts gives;
[tex]D→\left (4 \:,4.5\right) [/tex]
[tex]E→\left (5 \:,4.75\right) [/tex]
[tex]H→\left (8 \:,5.5\right) [/tex]
[tex]I →\left (9 \:,5.75\right) [/tex]
The number of equal parts obtained by counting are 8
Coordinates of point A is (2, 4)
Coordinates of point B is (10, 6)
Therefore;
Coordinates of point C is
[tex]\mathbf{ \left (2 + \frac{10 - 2}{8},\: 4 + \frac{6 - 4}{8}\right) }= \left (3 \:, 4.25\right) [/tex]
Coordinates of point D are;
[tex]\mathbf{\left (2 + \frac{10 - 2}{4} \: , 4 + \frac{6 - 4}{4}\right) }= \left (4 \:,4.5\right) [/tex]
Coordinates of point E are;
[tex]\mathbf{\left (2 + \frac{8 \times 3}{8} \: , 4 + \frac{2 \times 3}{8}\right)} = \left (5 \:,4.75\right) [/tex]
Coordinates of point F are;
[tex] \mathbf{\left (2 + \frac{8 \times 4}{8} \: , 4 + \frac{2 \times 4}{8}\right)} = \left (6 \:,5\right) [/tex]
Coordinates of point H are;
[tex]\mathbf{\left (2 + \frac{8 \times 6}{8} \: , 4 + \frac{2 \times 6}{8}\right)} = \left (8 \:,5.5\right) [/tex]
Coordinates of point I are;
[tex]\mathbf{\left (2 + \frac{8 \times 7}{8} \: , 4 + \frac{2 \times 7}{8}\right)} = \left (9 \:,5.75\right) [/tex]
Which gives;
[tex]D→\left (4 \:,4.5\right) [/tex]
[tex]E→\left (5 \:,4.75\right) [/tex]
[tex]H→\left (8 \:,5.5\right) [/tex]
[tex]I →\left (9 \:,5.75\right) [/tex]
Learn more about distance between points here;
https://brainly.com/question/10377723
#SPJ1