In the figure, AB is divided into equal parts. The coordinates of point A are (2, 4), and the coordinates of point B are (10, 6). Match each pair of coordinates to the corresponding point on AB.

In the figure AB is divided into equal parts The coordinates of point A are 2 4 and the coordinates of point B are 10 6 Match each pair of coordinates to the co class=

Respuesta :

Diving the length AB into equal parts gives;

[tex]D→\left (4 \:,4.5\right) [/tex]

[tex]E→\left (5 \:,4.75\right) [/tex]

[tex]H→\left (8 \:,5.5\right) [/tex]

[tex]I →\left (9 \:,5.75\right) [/tex]

How can the coordinates of the points be found?

The number of equal parts obtained by counting are 8

Coordinates of point A is (2, 4)

Coordinates of point B is (10, 6)

Therefore;

Coordinates of point C is

[tex]\mathbf{ \left (2 + \frac{10 - 2}{8},\: 4 + \frac{6 - 4}{8}\right) }= \left (3 \:, 4.25\right) [/tex]

Coordinates of point D are;

[tex]\mathbf{\left (2 + \frac{10 - 2}{4} \: , 4 + \frac{6 - 4}{4}\right) }= \left (4 \:,4.5\right) [/tex]

Coordinates of point E are;

[tex]\mathbf{\left (2 + \frac{8 \times 3}{8} \: , 4 + \frac{2 \times 3}{8}\right)} = \left (5 \:,4.75\right) [/tex]

Coordinates of point F are;

[tex] \mathbf{\left (2 + \frac{8 \times 4}{8} \: , 4 + \frac{2 \times 4}{8}\right)} = \left (6 \:,5\right) [/tex]

Coordinates of point H are;

[tex]\mathbf{\left (2 + \frac{8 \times 6}{8} \: , 4 + \frac{2 \times 6}{8}\right)} = \left (8 \:,5.5\right) [/tex]

Coordinates of point I are;

[tex]\mathbf{\left (2 + \frac{8 \times 7}{8} \: , 4 + \frac{2 \times 7}{8}\right)} = \left (9 \:,5.75\right) [/tex]

Which gives;

[tex]D→\left (4 \:,4.5\right) [/tex]

[tex]E→\left (5 \:,4.75\right) [/tex]

[tex]H→\left (8 \:,5.5\right) [/tex]

[tex]I →\left (9 \:,5.75\right) [/tex]

Learn more about distance between points here;

https://brainly.com/question/10377723

#SPJ1