Respuesta :
Answer:
7.84 x 10¹⁶ photons/s
Explanation:
Given,
Total energy = 0.54 J
Period = 33 s
Photons per second = ?
Wavelength of the Photon = 989 nm
Energy of single photon:
[tex]E =\frac{h c}{\lambda}[/tex]
[tex]=\frac{6.626 \times 10^{-34} \times 2.998 \times 10^{8}}{989 \times 10^{-9}}[/tex]
[tex]=2.01 \times 10^{-19} \mathrm{J}[/tex]
Total energy
Time period [tex]=33 \mathrm{s}[/tex]
Energy absorbed per sec [tex]=\frac{0.52}{33 }=0.01575 \mathrm{J} / \mathrm{s}[/tex]
Energy of a photon [tex]=2.01 \times 10^{-19} \mathrm{J} /[/tex] photon
Number of photons emitted per second is
[tex]\frac{0.01575}{2.01 \times 10^{-19}} \mathrm{J} / \text { photon }}[/tex]
Number of photons = 7.84 x 10¹⁶ photons/s
The number of photons per second are being emitted by the laser will be "7.84 × 10¹⁶ photons/s".
Wavelength and Photon
According to the question,
Total energy = 0.54 J
Period = 33 s
Photon's wavelength = 989 nm
We know the relation,
Energy of single photon be:
→ E = [tex]\frac{hc}{\lambda}[/tex]
By substituting the values,
= [tex]\frac{6.626\times 10^{-34}\times 2.998\times 10^8}{989\times 10^{-9}}[/tex]
= 2.01 × 10⁻⁹ J
Now, the absorbed energy be:
= [tex]\frac{0.52}{33}[/tex]
= 0.01575 J/s
hence,
The no. of photons emitted be:
= [tex]\frac{0.01575}{2.01\times 10^{-10}}[/tex]
= 7.84 × 10¹⁶ photons/s
Thus the above response is right.
Find put more information about Wavelength here:
https://brainly.com/question/1844674