Respuesta :

Answer: pH of a 0.500 M [tex]HNO_2[/tex] solution is 1.82

Explanation:

[tex]HNO_2\rightarrow H^++NO_2^-[/tex]

 cM              0             0

[tex]c-c\alpha[/tex]        [tex]c\alpha[/tex]     [tex]c\alpha[/tex]     

So dissociation constant will be:

[tex]K_a=\frac{(c\alpha)^{2}}{c-c\alpha}[/tex]

Give c= 0.500 M and [tex]\alpha[/tex] = ?

[tex]K_a=4.6\times 10^{-4}[/tex]

Putting in the values we get:

[tex]4.6\times 10^{-4}=\frac{(0.500\times \alpha)^2}{(0.500-0.500\times \alpha)}[/tex]

[tex](\alpha)=0.030[/tex]

[tex][H^+]=c\times \alpha[/tex]

[tex][H^+]=0.500\times 0.030=0.015[/tex]

Also [tex]pH=-log[H^+][/tex]

[tex]pH=-log[0.015]=1.82[/tex]

Thus pH of a 0.500 M [tex]HNO_2[/tex] solution is 1.82

The pH of a 0.500 M solution is 1.82

Balanced chemical equation:

                        [tex]HNO_2---- > H^++NO_2^-[/tex]

Initial:                 cM                       0             0

Equilibrium:      [tex]c-c\alpha[/tex]                    [tex]c\alpha[/tex]            [tex]c\alpha[/tex]

   

Dissociation constant:

[tex]K_a=\frac{(c\alpha)^2}{c-c\alpha}[/tex]

Given:

c= 0.500 M and [tex]\alpha[/tex]  = ?

[tex]K_a=4.6*10^{-4}[/tex]

On substituting the values:

[tex]K_a=\frac{(c\alpha)^2}{c-c\alpha}\\\\4.6*10^{-4}=\frac{(0.500\alpha)^2}{0.500-0.500\alpha}\\\\\alpha=0.030[/tex]

[tex]H^+=c*\alpha\\\\H^+=0.500*0.030\\\\H^+=0.015[/tex]

Calculation for pH:

[tex]pH=-log [H^+]\\\\pH= -log [0.015]=1.82[/tex]

Thus, the pH of a 0.500 M  solution is 1.82.

Find more information about Dissociation constant here:

brainly.com/question/3006391