Consider the function f ( x ) = 1 − 4 x 2 on the interval [ − 1 , 3 ] . Find the average or mean slope of the function on this interval, i.e. f ( 3 ) − f ( − 1 ) 3 − ( − 1 ) =

Respuesta :

Answer:

The average slope is 8.

Step-by-step explanation:

Let f be defined on the closed interval [a, b]. The average slope of f between a and b is the quotient

                                       average slope = [tex]\frac{f(b)-f(a)}{b-a}[/tex]

To find the average slope of the function [tex]f(x)=1-4x^2[/tex] on the interval [-1, 3] you have to evaluate your function in the interval and then divide by the interval.

So,

[tex]f(-1)=1-4(-1)^2=-3\\\\f(3)=1-4(3)^2=-35[/tex]

The average slope is  [tex]\frac{f(3)-f(-1)}{3+1}= \frac{-3+35}{3+1}=\frac{32}{4}=8[/tex]