Answer:
1.8 m/s
Explanation:
[tex]m_1[/tex] = Mass of Max = 15 kg
[tex]m_2[/tex] = Mass of Maya = 12 kg
[tex]u_1[/tex] = Initial velocity of Max = 8.2 m/s
[tex]u_2[/tex] = Initial velocity of Maya = -4.6 m/s
[tex]v_1[/tex] = Final velocity of Max
[tex]v_2[/tex] = Final velocity of Maya = 3.4 m/s
In this system the linear momentum is conserved
[tex]m_1u_1+m_2u_2=m_1v_1+m_2v_2\\\Rightarrow v_1=\dfrac{m_1u_1+m_2u_2-m_2v_2}{m_1}\\\Rightarrow v_1=\dfrac{15\times 8.2+12\times -4.6-12\times 3.4}{15}\\\Rightarrow v_1=1.8\ m/s[/tex]
The velocity of Max after their collision is 1.8 m/s