Chalcocite is a mineral that contains 79.8% of copper. How many meter of wire with diameter of 0.1019 in can be produced from 5.23 lb of chalcocite?
Vcylinder = π*r2h, density of copper is 8.96 g/cm3, 1 lb=454 g

102 m

40.2 m

10.1 m

2.59 × 104

211 m

Respuesta :

Answer: The length of copper wire that can be produced is 40.2 m

Explanation:

We are given:

Mass of chalcocite = 5.23 lb = 2374.42 g  (Conversion factor:  1 lb = 454 g)

79.8 % (m/m) of copper

This means that 79.8 grams of copper is present in 100 grams of chalcocite

Applying unitary method:

In 100 grams of chalcocite, the mass of copper present is 79.8 grams

So, in 2374.42 grams of chalcocite, the mass of copper present will be = [tex]\frac{79.8}{100}\times 2374.42=1873.42g[/tex]

To calculate volume of a substance, we use the equation:

[tex]\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}[/tex]

Density of copper = [tex]8.96g/cm^3[/tex]

Mass of copper = 1873.42 g

Putting values in above equation, we get:

[tex]8.96g/cm^3=\frac{1873.42g}{\text{Volume of copper}}\\\\\text{Volume of copper}=\frac{1873.42g}{8.96g/cm^3}=209.08cm^3[/tex]

To calculate the length of the wire, we use the equation:

[tex]V=\pi r^2h[/tex]

where,

V = volume of copper wire = [tex]209.08cm^3=209.08\times 10^{-6}m^3[/tex]     (Conversion factor:  [tex]1m^3=10^6cm^3[/tex] )

r = radius of the copper wire = [tex]\frac{d}{2}=\frac{0.1019}{2}=0.051in=1.29\times 10^{-3}m[/tex]     (Conversion factor: 1 in = 0.0254 m)

h = length/ height of the copper wire = ?

Putting values in above equation, we get:

[tex]209.08\times 10^{-6}m^3=(3.14)\times (1.29\times 10^{-3})^2\times h\\\\h=\frac{209.08\times 10^{-6}}{3.14\times (1.29\times 10^{-3})^2}=40.2m[/tex]

Hence, the length of copper wire that can be produced is 40.2 m