Respuesta :

[tex]\longrightarrow{\green{ D. \:3 {a}^{4} \sqrt{2a} }}[/tex] 

[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]

[tex] \sqrt{18 {a}^{9} } \\ \\ ➝ \: \sqrt{2 \times 3 \times 3 \times {a}^{9} } \\ \\ ➝ \: \sqrt{2 \times ({3})^{2} \times {( {a}^{4}) }^{2} a } \\ \\ [∵( { {a}^{4} )}^{2} a = {a}^{4 \times 2 + 1} = {a}^{9}] \\ \\ ➝ \: 3 \times {a}^{4} \sqrt{2a} \\ \\ ➝ \: 3 {a}^{4} \sqrt{2a} [/tex]

[tex]\pink{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: Mystique35}}}}}[/tex]

Answer:

The answer is [tex]3a^{4}\sqrt{2a}[/tex]

Step-by-step explanation:

To simplify the radical, start by factoring 9 out of 18 for step 1. Next, for step 2, rewrite 9 as [tex]3^{2}[/tex]. Then, factor out [tex]a^{8}[/tex] for step 3. For step 4, rewrite [tex]a^{8}[/tex] as [tex](a^{4})^{2}[/tex]. Then, for step 5, move the 2 in the radical. Rewrite [tex]3^{2}(a^{4})^{2}[/tex]as [tex](3a^{4})^{2}[/tex] for step 6. Then, add parentheses to the radical for step 7. Finally, for step 8 pull the terms out from under the radical, and the answer is [tex]3a^{4}\sqrt{2a}[/tex].  

Step 1: [tex]\sqrt{9(2)a^{9} }[/tex]

Step 2: [tex]\sqrt{3^{2}*2a^{9}[/tex]

Step 3:  [tex]\sqrt{3^{2}*2(a^{8}a) }[/tex]

Step 4: [tex]\sqrt{3^{2}*2((a^{4})^{2}) }[/tex]

Step 5: [tex]\sqrt{3^{2}(a^{4})^{2}*2a }[/tex]

Step 6: [tex]\sqrt{(3a^{4} )^{2}*2a }[/tex]

Step 7:  [tex]\sqrt{(3a^{4})^{2}*(2a) }[/tex]

Step 8: [tex]3a^{4}\sqrt{2a}[/tex]