This data is from a sample. Calculate the mean, standard deviation, and variance. Suggestion: use technology. Round answers to two decimal places. x 10.1 45.6 18.9 17.9 18.1 15.7 26.7 36.9

Mean =

Standard Deviation =

Variance =

Ooops - now you discover that the data was actually from a population! So now you must give the population standard deviation.

Population Standard Deviation =

Respuesta :

Answer:

Mean = 189.9

Standard Deviation =  31697.093

Variance = 178.037

Population Standard Deviation = 166.538 .

Step-by-step explanation:

We are given the following data below;

            X                                X - X bar                            [tex](X - Xbar)^{2}[/tex]

         10.1                       10.1 - 189.9 =  -179.8                   32328.04

         45.6                      45.6 - 189.9 = -144.3                   20822.49

         18.9                       18.9 - 189.9 = -171                          29241

         17.9                       17.9 - 189.9 = -172                          29584

         18.1                        18.1 - 189.9 = -171.8                       29515.24

         15.7                       15.7 - 189.9 = -174.2                     30345.64

         26.7                      26.7 - 189.9 = -163.2                   26634.24

         36.9                      36.9 - 189.9 = -153                       23409          

                                                                       [tex]\sum (X-Xbar)^{2}[/tex] = 221879.65  

Mean, X bar = [tex]\frac{\sum X}{n}[/tex] = [tex]\frac{10.1 +45.6+ 18.9+ 17.9+ 18.1+ 15.7+ 26.7+ 36.9}{8}[/tex]

                               = 189.9

Variance = [tex]\frac{\sum (X - Xbar)^{2} }{n-1}[/tex] = [tex]\frac{221879.65}{8-1}[/tex] = 31697.093

Standard deviation = [tex]\sqrt{\frac{\sum (X - Xbar)^{2} }{n-1}}[/tex] = [tex]\sqrt{31697.093}[/tex] = 178.037

Now we find that the data was actually from a population so now the formula for Population Standard deviation is given by = [tex]\sqrt{\frac{\sum (X - Xbar)^{2} }{n}}[/tex]

Population Standard Deviation = [tex]\sqrt{\frac{221879.65 }{8}}[/tex]= 166.538 .