Respuesta :

Explanation:

The given data is as follows.

      [tex]C_{1} = 1.50 \times 10^{-6} F[/tex]

      [tex]C_{1} = 3.50 \times 10^{-6} F[/tex]    

      Voltage = 2.50 V

Hence, calculate the equivalence capacitor as follows.

    [tex]\frac{1}{C} = \frac{1}{C_{1}} + \frac{1}{C_{2}}[/tex]

    [tex]\frac{1}{C} = \frac{1}{1.50 \times 10^{-6} F} + \frac{1}{3.50 \times 10^{-6} F}[/tex]

                 = [tex]0.945 \times 10^{-6} F[/tex]

          C = [tex]1.06 \times 10^{-6} F[/tex]

Now, we will calculate the charge across each capacitance as follows.

              Q = CV

                  = [tex]1.06 \times 10^{-6} F \times 2.50 V[/tex]

                  = [tex]2.65 \times 10^{-6} C[/tex]

                  = [tex]2.65 \mu C[/tex]

Thus, we can conclude that [tex]2.65 \mu C[/tex] is the charge stored on each given capacitor.