Respuesta :
Answer:
Part 1) It takes 7 tiles to cover the length of the floor
part 2) It takes 4 1/3 tiles to cover the width of the floor
Step-by-step explanation:
step 1
we know that
To find out how many tiles are needed to cover the length of the floor, divide the length of the floor by the length of one square tile
[tex]10\frac{1}{2}:1\frac{1}{2}[/tex]
Convert mixed number to an improper fraction
[tex]10\frac{1}{2}\ ft=10+\frac{1}{2}=\frac{10*2+1}{2}=\frac{21}{2}\ ft[/tex]
[tex]1\frac{1}{2}\ ft=1+\frac{1}{2}=\frac{1*2+1}{2}=\frac{3}{2}\ ft[/tex]
substitute
[tex]\frac{21}{2}:\frac{3}{2}=\frac{21}{3}=7\ tiles[/tex]
step 2
To find out how many tiles are needed to cover the width of the floor, divide the width of the floor by the length of one square tile
[tex]6\frac{1}{2}:1\frac{1}{2}[/tex]
Convert mixed number to an improper fraction
[tex]6\frac{1}{2}\ ft=6+\frac{1}{2}=\frac{6*2+1}{2}=\frac{13}{2}\ ft[/tex]
[tex]1\frac{1}{2}\ ft=1+\frac{1}{2}=\frac{1*2+1}{2}=\frac{3}{2}\ ft[/tex]
substitute
[tex]\frac{13}{2}:\frac{3}{2}=\frac{13}{3}\ tiles[/tex]
Convert to mixed number
[tex]\frac{13}{3}\ tiles=\frac{12}{3}+\frac{1}{3}=4\frac{1}{3}\ tiles[/tex]
7 tiles can occupy the length of the floor, while 5.33 tiles can occupy the width of the floor
The dimension of the tile is given as:
[tex]\mathbf{Length =1\frac 12ft}[/tex]
The dimension of the bathroom floor is given as:
[tex]\mathbf{Length =10\frac 12ft}[/tex]
[tex]\mathbf{Width =6\frac 12ft}[/tex]
The number of tiles that can occupy the length of the floor is calculated by dividing the length of the floor by the length of the tile.
So, we have:
[tex]\mathbf{n = \frac{10\frac 12}{1\frac 12}}[/tex]
Express as decimals
[tex]\mathbf{n = \frac{10.5}{1.5}}[/tex]
Divide
[tex]\mathbf{n = 7}[/tex]
Hence, 7 tiles can occupy the length of the floor
The number of tiles that can occupy the width of the floor is calculated by dividing the width of the floor by the length of the tile.
So, we have:
[tex]\mathbf{n = \frac{6\frac 12}{1\frac 12}}[/tex]
Express as decimals
[tex]\mathbf{n = \frac{6.5}{1.5}}[/tex]
Divide
[tex]\mathbf{n = 5.33}[/tex]
Hence, 5.33 tiles can occupy the width of the floor
Read more about areas at:
https://brainly.com/question/946354